Nodal Importance Concept for Computational Efficiency in Optimal Sensor Placement in Water Distribution Systems

Scott W. Rogers¹, Jiabao Guan¹, Morris L. Maslia², and Mustafa M. Aral¹

¹Multimedia Environmental Simulations Laboratory, Georgia Institute of Technology ²Agency for Toxic Substances and Disease Registry

"Computational Efficiency Issues in Optimal Sensor Location" WDSA Symposium EWRI 2007 May 17, 2007

Disclaimer

The findings and conclusions in this presentation have not been formally disseminated by CDC or ATSDR and should not be construed to represent any agency determination or policy.

Background & Motivation for Study

- Recent interest in protecting drinking water in water distribution systems (WDSs) in the event of terrorist attack by contaminant injection
- Human variables of uncertainty hinder definitive contaminant sensor placement in WDSs
- Methods documented to date
 - computationally-expensive algorithms
 - versimplifying assumptions
 - ➤ inability for implementation on larger systems
- Method needed to increase efficiency of search for optimal placement schemes without compromising WDS protection.

Study Problem

> Objective

Allocate contaminant sensors to WDS nodes in a <u>computationally efficient</u> manner to provide maximum WDS protection.

Performance Measures

- $\succ Z_{time}$ = expected detection time (minimized)
- $\succ Z_{vol}$ = expected contaminated water volume (minimized)
- $\succ Z_{lik}$ = detection likelihood (maximized)

Limiting Factor

- \succ *M* = fixed number of sensors available
- Attack Scenario
 - eligible injection node: any one node in WDS
 - eligible injection time: any 5-minute multiple of first 1/4 of study period
 - ➤ injection: constant mass flow of conservative contaminant

Study System

BWSN Network 1 *

▶ 129 nodes (126 junctions, 2 tanks, 1 reservoir)

178 links (168 pipes, 2 pumps, 8 valves)

localized flow behavior

large variance in hydraulic demand (63% of junctions with demand)

➢ 96-hour study period

* "Battle of the Water Sensor Networks," 8th Annual WDSA Symposium

Nodal Importance Concept (1)

Nodal Importance Defined

- degree to which an individual WDS node should be considered as a candidate for sensor placement
- related to potential on average for adverse effects to be experienced at an individual node under an unknown attack scenario

Use of Concept

- ➤ isolate a subset of "more important" nodes to confine search domain
- test different combinations of subset nodes with optimization algorithm to find sensor placement scheme providing maximum protection

Expected Advantages

- better-performing sensor placement schemes
- reduced computational runtimes

Nodal Importance Concept (2) ≻Nodal Importance Function

$$f_{is} = \alpha_1 \frac{V_{is}^{cont}}{\max_i (V_{is}^{cont})} + \alpha_2 \left(\frac{T_s - t_{is}^d}{T_s}\right) D_{is}$$

- V_{is}^{cont} = total contaminated volume associated with node *i* under scenario *s* assuming no contaminant detection at node *i*
- t_{is}^{d} = time after injection during scenario *s* when contaminant is first present at node *i* (if not present at any time, $t_{is}^{d} = 2$ x study period duration)
- T_s = time after injection at the end of study period for scenario s
- $D_{is} = 1$ or 0, indicating contaminant presence or absence, respectively, of contaminant at node *i* at any time during scenario *s*
- α_1 , α_2 : scalars in domain [0, 1] ($\alpha_1 + \alpha_2 = 1$)

Nodal Importance Concept (3)

Weighting of importance function terms

- Use array of (α₁, α₂) schemes to capture nodes according to different protection preferences
- $\succ (\alpha_1, \alpha_2) = (1, 0), (0, 1), \& (1/2, 1/2)$ for this study

Relative Importance

$$f_{is}^{rel} = \frac{f_{is}}{\max_{i} (f_{is})}$$

Expected Relative Importance

$$F_i = \frac{1}{S} \sum_{s} f_{is}^{rel}$$

S = number of Monte Carlo scenarios run

 \succ Used to rank nodes for a particular (α_1, α_2) scheme

Subset Creation (1)

Base Subsets to Total Subset

> each "base subset" of more-important nodes corresponds to a particular (α_1, α_2) scheme

"total subset" is the union of all base subsets generated

Only nodes in total subset tested for sensor placement
The optimal subset: smallest subset that includes optimal nodes for sensor placement

Optimization (1)

Program

$$\max Z_{comb} = \gamma_1 \frac{\max_s(t_s^d) - Z_{time}}{\max_s(t_s^d)} + \gamma_2 \frac{\max_s(V_s^{cont,d}) - Z_{vol}}{\max_s(V_s^{cont,d})} + \gamma_3 Z_{lik}$$

s.t.
$$\sum_{a=1}^A m_a = M \quad \forall all \ a$$
$$m_a \in \{0,1\} \quad \forall all \ a$$

 t_s^d = time after attack when contaminant is first present under scenario *s* at any node *i* with an assigned sensor

 $V_s^{cont,d}$ = total volume contaminated under s at all *i* until t_s^d

 $m_a = 0$ or 1, indicating the absence or presence, respectively, of a sensor at total subset node a

A = number of nodes in total subset

 $\gamma_1, \gamma_2, \gamma_3$: scalars in the domain [0, 1] $(\gamma_1 + \gamma_2 + \gamma_3 = 1)$

Optimization (2)

"Simple" Genetic Algorithm

> chromosome: binary string; bits represent m_a values

population: initialized in uniform, random manner

→ **crossover**: one-point, $p_{cross} = 0.95$; parents chosen through roulette-wheel selection according to F_i values under $(\alpha_1, \alpha_2) = (1/2, 1/2)$

mutation: uniform, random "bit-flipping", $p_{mut} = 0.05$

post-handling: uniform, random "bitflipping" to satisfy sensor availability constraint

elitist selection: according to objective function

Performance Testing (1)

Decision Variables

- variables kept constant
 - > M = 5
 - **> S** = 3,000
 - > GA population size = 500
 - \succ number of GA generations = 500
- designated weighting schemes
 - $\succ (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = (1, 0), (0, 1), (1/2, 1/2)$

$$\succ$$
 ($\gamma_1, \gamma_2, \gamma_3$) = (1/4, 1/2, 1/4)

➤ subset size

- ➤ critical variable for testing use of importance concept allowed to vary
- ➤ base subset size candidates: 5, 10, 20, 30, 40, 50
- Computational Runtimes
 - ➢ less than 1 hour for all tests employing nodal importance concept

Performance Testing (2)

Method Results

Method	Base Subset Size	Total Subset Size	Sensor Nodes ("JUNCTION-x")	Z _{time} (min)	Z _{vol} (gal)	Z _{lik} (%)	Z _{comb} x 10 ²
random placement				7382	10994	37.6	20.1
GA-only		129	17, 49, 84, 100, 122	3783	2269	70.5	73.7
ranking-GA (a)	5	9	17, 30, 68, 83, 126	4162	3949	66.9	64.9
ranking-GA (b)	10	18	30, 68, 83, 102, 118	3686	1985	71.1	75.3
ranking-GA (c)	20	37	17, 68, 83, 100, 103	3272	2635	75.1	74.6
ranking-GA (d)	30	47	68, 83, 100, 102, 118	3034	3038	77.2	74.1
ranking-GA (e)	40	59	45, 68, 83, 103, 118	3236	2665	75.2	74.6
ranking-GA (f)	50	73	68, 83, 100, 103, 117	3222	2954	75.6	73.5

Performance Testing (3)

Sensor Placement: Method "ranking-GA (b)"

Performance Testing (4)

> Performance vs. GA Generation

Georgia Tech

School of

Performance Testing (5)

Benefit-Cost Ratios

- Benefit: gained performance for method beyond baseline from random placement
- B/C Ratio: benefit averaged over all scenarios up to GA generation of convergence <u>for all</u> <u>methods</u>

Total Subset Size

Observations & Conclusions

- Using nodal importance concept can lead to heightened efficiency in the optimization of contaminant sensor placement without compromising WDS protection goals.
- A subset of more-important nodes too small in size may not provide enough diversity for finding a sensor placement scheme of acceptably high performance.
- As the size of a subset increases toward the total number of WDS nodes, performance reaches a peak value then converges to a value resulting from optimization without using the importance concept.

Future Work

- Applying nodal importance concept to optimization of sensor placement in larger systems
- Resolving ambiguities
 - definitiveness of importance functions & corresponding variables
 - Inumber of Monte Carlo scenarios to run
 - ➤ subset sizes
- Developing means of faster WDS simulation

