Available Energy Assessment and Recovery in Water Distribution Systems

Ilker T. Telci Graduate Student

MESL February 7 2012

Problem Definition

- Given a water distribution system (WDS) under operation:
 - Evaluation of available excess energy and
 - Optimal design of an energy recovery system for WDSs.

Micro hydropower plants:

- Number
- Location
- Capacity
- Operation schedule

Constraints of a Water Distribution System

- Demand Flows
- Pressure Heads
 - Excess:
 - Leakage and structural damage
 - Too low:
 Operational problems

- 8 pumping locations
- No pressure reducing valves

Diameter (in)	Number of links
16	124
12	3434
10	52
8	6007
6	5361
4	510
2	560
Total	16048

Dover Township WDS, Toms River, NJ

Pressure Violations

- Turbine at location 3.
- Full operation.

-Simulation Time: 1 Year

-One month is represented by 1 day of simulation.

- Time step= I hour

- Number of time steps 12x24=288

Turbine Operation Scheduling Problem

- A turbine is located at the pumping station 3.
 - Continuous operation causes pressure constraint violations.
- What is the optimal operation schedule for this turbine?

Optimization Problem:

Decision variable: operation schedule

Objective:

Maximize the amount of energy recovered

such that

Minimum pressure in the network is above some limit.

Turbine Operation Scheduling

Trial and error example

Pressure violations occur at t=14 hr.

Decision on the turbine at this time affects the pressure distributions at future times.

> Pressure 20.86 27.68 31.76 35.13 psi

Pressure Distribution at t=18h when turbine was closed only at t=14h

Pressure Distribution t=18h for full turbine operation

Turbine Operation Scheduling Problem Trial and error

- Turn off the turbine for the times when pressure constraint violations occur.
- Trial and error procedure did not work.
- The operational decision for a given time step affects the pressure distribution in the future time steps.
- Also trial and error procedure does not guarantee maximum energy recovery.
- Genetic algorithm is used to solve this optimization problem.

Turbine Operation Scheduling Problem Fitness Function

 $t = t + \Delta t$ $e_T = e_T + P_t \Delta t$

No

|t=0|

 $e_{T} = 0$

EPANET

 $P_{\min} < \text{Minimum Limit}$

Stop

Yes

Dimensionless Time, $T = \frac{t}{t_{sim}} = \frac{t}{288 \text{ h}}$

Dimensionless Energy, $E = \frac{e_T}{e_o} = \frac{e_T}{17633.52 \text{ kWh}}$

Fitness Value =
$$1000(1-T) - E$$

Minimize (Fitness Value): Lower the fitness value, better the individual.

t: First pressure constraint violation time.

 t_{sim} : Simulation time.

 Δt : Time step.

 P_t : Power generated by the turbine at time t.

 e_T : Energy produced at the turbine.

 e_o : Energy of the flow passing through the turbine pipe without the turbine.

$$e_o = \int_0^{t_{sim}} \gamma Q H dt$$

Turbine Operation Scheduling Problem Parameters

Turbine I: NCI50200

Turbine 2: NC100200

Pressure Limits:
I) P_{min}=20 psi
2) P_{min}=15 psi

Population size: Different population sizes are tried.

Turbine Operation Scheduling Problem Results – Energy Budget for the System

Turbine	Pressure Limit	Population Size	Turb En. (k₩h/y)	Pump En. Decrease * (kWh/y)	Net Energy Gain (kWh/y)	% Energy Production of the Turb.
	20	108	53368	54282	107650	49.6
	20	152	59464	74586	134050	44.4
INC130200	15	104	51882	124068	175950	29.5
CI	15	152	74028	118442	192470	38.5
NC100200	20	300	28424	136726	165150	17.2
	15	300	32331	148219	180550	17.9

*Energy used by the pumps without the turbine is 3,458,769 kWh/y

Turbine Operation Scheduling Problem Results – Energy Budget for the Pumps

		Energy Consumed		Difference	
		by the Pumps			
		No Turbine	NC100200 Pmin=20 psi	NoTurb-Turbine	
	Pump	(kWh/y)	(kWh/y)	(kWh/y)	
	20003	0	0	0	
	20004	0	0	0	
	20005	0	0	0	
	20011	54235.35	56516.6	-2281.25	
	20013	0	0	0	
	20019	0	0	0	
	20020	0	0	0	
	20021	0	0	0	
	20022	0	0	0	
	20023	0	0	0	
	20024	0	0	0	
	20025	0	0	0	
	PAI_1	328974.5	324952.2	4022.3	
	PAI_2	64980.95	64313	667.95	
	PAI_3	90567.45	86574.35	3993.1	
60	PAI_4	0	0	0	
n di	PAI_5	197180.3	137991.9	59188.4	
Irbi	PAI_6	374559.35	313279.5	61279.85	
ps L	PAI_7	100692.55	94381.7	6310.85	
Ĕ	PAI_8	0	0	0	
۵.	PAI_9	117570.15	109802.95	7767.2	
	PAI_10	302643.4	237031	65612.4	
	PAI_11	204133.55	204651.85	-518.3	
	PAI_12	368368.95	364390.45	3978.5	
	PAI_13	126990.8	129633.4	-2642.6	
	PAI_14	14428.45	15216.85	-788.4	
	PAI_15	315630.1	338183.45	-22553.35	
	PAI_16	34419.5	38095.05	-3675.55	
	PAI_17	505984.9	551591.65	-45606.75	
	PAI_18	248083.2	247064.85	1018.35	
	PAI_19	9223.55	9121.35	102.2	
	PAI_20	0	0	0	
	Total En.				
	Consumed	3458667	3322792.1	135874.9	

Increased energy consumption at the pump after turb. Decreased energy consumption at the pump after turb.

Turbine Operation Scheduling Problem Results – Order of magnitudes

Turbine	Pressure Limit	Population Size	Turb En. (kWh/y)	Pump En. Decrease * (kWh/y)	Net Energy Gain (kWh/y)	% Energy Production of the Turb.
	20	108	53368	54282	107650	49.6
	20	152	59464	74586	134050	44.4
INC150200		104	51882	124068	175950	29.5
15	152	74028	118442	192470	38.5	
NC100200	20	300	28424	136726	165150	17.2
	15	300	32331	148219	180550	17.9

*Energy used by the pumps without the turbine is 3,458,769 kWh/y

HDR feasibility study for Skagit county public utility district.

Giugni et. al. 2009

					•			
Development Option	Total Capacity	Plant Factor	Energy Production	Capitol Cost	Metering	Annual Revenue	Payback Period	Net Present Value
non-dim	kW	non- dim	kWh/yr	2011 \$	non-dim	2013 \$/year	years	2013 \$
Judy Reservoir – Single-Unit Powerhouse	290	0.4	454,000	\$1,363,000	Net Meter	\$45,718	30	\$1,688,981
Judy Reservoir – Single-Unit Powerhouse with Extended Tailrace	330	0.4	508,000	\$1,702,000	Net Meter	\$82,956	21	\$3,891, 1 31
Judy Reservoir – Two- Unit Powerhouse	670	0.3	754,000	\$2,204,000	Net Meter	\$75,928	29	\$2,925,782
Judy Reservoir – Two-Unit Powerhouse with Extended Tailrace	750	0.3	833,000	2,585,000	Net Meter	\$160,203	16	\$8,226,272
9th and Highland PRV	30	0.75	197,000	\$362,000	PPA	\$19,183	19	\$260,924
Rhodes Road PRV	50	0.63	278,000	\$429,000	PPA	\$27,070	16	\$554,372

Scenario	PATs	Energy production [MWh/year]
Α	3 NC 150-200	300,1
в	1 NC 150-200	153.0
•	1 NC 100-200	155,0
n	3 NC 150-200	284.4
	1 NC 100-200	204,4

Table 1. Summary of Results of Feasibility Assessment

Turbine Operation Scheduling Problem

Two turbines at different locations

Fitness function based on pressure

Pressure Violation Magnitude,
$$P_v = \sum_{j=1}^{N_t} \sum_{i=1}^{N_n} \left[\min\left(0, P_{\min} - P_{i,j}\right) \right]^2$$

Fitness Value = $1000P_v - e_T$

- i : Node index.
- j : Time index.
- N_t : Number of time steps
- N_n : Number of nodes
- $p_{i,j}$: pressure at ith node at time j.
- p_{\min} : Minimum pressure constraint.
- e_T : Energy produced at the turbine.
- This search was started approximately I month ago.
- This fitness function has not produced a best solution yet.

Next Steps

- Appropriate population size for 2-turbine cases is being analyzed.
- Preliminary results show that 3-turbine case will be computationally expensive.
- The network has been converted into a gravity driven system and similar analysis will be performed on this new network.

Thank you...