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Introduction to Multiphase Flow
 Multiphase flow means “the simultaneous movement of multiple 

phases, such as water, air, non-aqueous phase liquid (NAPL), 
through porous media.”
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Capillary Pressure between Phases
 Numerical difficulty

• Transition between regions.
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• Two flow equations 
for water and gas phases

• Two flow equations 
for water and NAPL phases

• Three flow equations 
for water, gas and NAPL phases

W, w = water
G, g  = gas
N, n  = NAPL



Mathematical Approach for Multiphase Flow
 Governing equations: Groundwater, gas, and NAPL

Capillary pressure



C. Pressure-Saturation-R. Permeability (1)
 cP-S-kr relationships

• Brooks-Corey law (1964)
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C. Pressure-Saturation-R. Permeability (2)
 cP-S-kr relationships

• van Genuchten law (1980)



Three-Phase Systems in the Shallow Aquifer
 Mobile phases: Water and NAPL
 Constant pressure head: Gas

• The soil gas in the unsaturated zone is connected to the atmosphere.
• The gas movement has negligible impacts on the movement of water and 

NAPL. 



Water-NAPL Two-Phase System
 Mobile phases: Water and NAPL
 No gas phase
 Example: CO2 injection in deep geological systems



Numerical Techniques
 Global implicit scheme

• Solves multiphase flow equations simultaneously.
• Generates a non-symmetric global matrix.

 Upstream weighting scheme (Upwind scheme)
• Relative permeability is evaluated based on a flow direction.

 Sparse matrix solvers
• Iterative matrix solver: IML++    

– Failed when the global implicit scheme is used.
• Direct matrix solver: Pardiso solver

– Works good with the global implicit scheme.



Buckley-Leverett Problem
 Buckley-Leverett problem represents a linear water-flood of a 

petroleum reservoir in a one-dimensional, horizontal domain. 
• The pore spaces of the domain is initially filled with a NAPL, i.e., liquid oil.

k = 10-11 m2

Water Qw=AVw

BC Type I for ψw
Exit boundary for sn 

BC Type II for ψw
BC Type I for sn

NAPL Qn=AVn

x

sn=0.9, sw=0.1

Properties Values

Boundary condition

Water influx at x=0 m
Water pressure at x=300 m

NAPL saturation at x=0 m
(Sw at x=0 m)

vw = 0.01 m/s, BC Type II
pw = 2.9 m H2O, BC Type I

sn = 0.1, BC Type I
(sw = 0.9, BC Type I)

Initial condition
Water saturation
NAPL saturation

sw = 0.1
sn = 0.9

Darcy velocity = 0.01 m/s



Properties Values Comment
Soil

Intrinsic permeability 

Porosity

10-11 m2

0.3

Pore size distribution index 2.0 Brook-Corey law

Water residual saturation

NAPL residual saturation

swr = 0.1 

snr = 0.1

Fluid
Water density

NAPL (oil) density

Water viscosity 

NAPL(oil) viscosity

Buckley-Leverett Problem (contd.)
 Parameters



Buckley-Leverett Problem (Results)
 Comparison of water saturation profiles 

• Semi-analytical solution vs. TechFlowMP results
• Coarse and dense meshes
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McWhorter-Sunada Problem 
 The flows of water and NAPL are initiated by the capillary pressure 

between two phases in a domain.

k = 10-11 m2vw = - vn
No flow 
boundary

BC Type I 
for ψw & sw

x=0 m x=2.6 mx

Properties Values
Boundary condition

Water pressure (x=0 m,t)
Water pressure(x=5 m,t)

NAPL saturation (x=0 m,t)
(Water saturation (x=0 m,t))
NAPL saturation (x=5 m,t)

ψw = 19.885 m H2O, BC Type I
No flux/flow boundary

sn = 0., BC Type I
(sw = 1., BC Type I)
No flow boundary

Initial condition
Water saturation (x, t=0)
NAPL saturation (x, t=0)

Water pressure (x, t)

sw = 0.01
sn = 0.99

ψw = 19.885 m H2O
(Pw =195000 Pa)



McWhorter-Sunada Problem (contd.) 
Properties Values Remark

Soil
Soil intrinsic permeability 

Porosity
10-11 m2

0.3
Pore size distribution index

Entry pressure, Pd

2
5000 Pa (ψw=0.5099 mH2O)*

Brook-Corey law
1 mH2O=9806.65Pa

Water residual saturation 
NAPL residual saturation

swr = 0.
snr = 0.

Fluid
Water density

NAPL (oil) density
Water viscosity

NAPL(oil) viscosity

ρw = 1000 kg/m3

ρn = 1000 kg/m3

0.001 Pa s-1 (= kg/m s)
0.001 Pa s-1 (= kg/m s)

Domain and space discretization
Domain size, Length

Space step size
L = 2.6 m

Δx = 0.01 m 260 elements

Water viscosity
NAPL(oil) viscosity

0.001 Pa s-1 (= kg/m s)
0.001 Pa s-1 (= kg/m s)

Time discretization
Simulation time
Time step size

T = 10,000 s
Δt = 1 – 100 s (Max. 15 iterations)



McWhorter-Sunada Problem (contd.) 
 The change in water saturation over time

• Semi-analytical solutions vs. TechFlowMP results
– The global implicit scheme, upwind scheme, and Pardiso solver are 

implemented.
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NAPL Release at the Ground Surface
 NAPL’s release into the variably saturated zone.

• Three phases: water, gas, and NAPL.
• A NAPL is released for 600 sec.

k = 9.9 10-12 m2

z=1 ft
(0.3m)
dz=0.05ft

Constant  atmospheric 
pressure

z

NAPL source,
Qn=0.505 ft3/d for 600 sec

BC Type I  for ψw

x= 3.05ft (0.9 m)
dx=0.18ft (0.055m)

z=0.4 ft

x

Initial condition

• Water: Variable sw
• NAPL: sn = 0 at t=0 sec
• Water head: ψw = 0.4 ft H2O

Domain and space discretization

• X = 93 cm:     Δx = 0.18 ft (5.47 cm)
• Z = 30.48 cm: Δz = 0.05 ft (1.524 cm)

Time discretization

• Simulation time: T = 10 hrs 
(Δt = 0.01 – 8 sec)



NAPL Release at the Ground Surface (contd.)
NAPL’s spreading with time.



NAPL Release at the Ground Surface (contd.)

• The spreading of the released NAPL is 
expected to be completely within a 
relatively short period of time. 

• The immobilized NAPL becomes a long-
lasting contaminant source.

10 minutes after injecting 1 hour

5 hours 10 hours



GW Pollution in the Hadnot Point Industrial Area
 HPIA,  Camp Lejeune, NC.

Parameters Description

Domain size

Length in x-axis: 8200.0 ft  (∆x=50 ft)
Length in y-axis: 6450.0 ft (∆y=50 ft)
Depth: from 7.47161 ft to -240.744 ft
Origin: (X= 2497210.0 ft, Y=335640.0, Z=0.0)

Grid

Total number of rows (Cells i): 129
Total number of columns (Cells j): 164
Total number of layers (Cells k): 7

Number of nodes: 171,600 
Number of cells: 148,092 
(No. active cells: 99,352; inactive cells: 48,740)

Elevation

Number of elevation data: 148,092
Minimum value: -240.744 ft
Maximum value: 7.47161
Mean: -98.2263, Median: -77.2142
Reference time: 12/30/1988

Stress period
240 
(from 1/1/11942 to 1/1/1962 = 7305 days)

=NAPL source



Application to GW Pollution in HPIA (contd.)
 NAPL at HPIA,  Camp Lejeune, NC.

• Contaminant sources are immobilized NAPLs. 
• The dissolution of the immobile NAPL and its 

transport in the whole domain will be investigated.

• The migration of the NAPL can be analyzed within a 
very limited region around the source area.



Thank  you.

Questions?
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