Multiphase Flow in the Subsurface - Flow of a Light Nonaqueous Phase Liquid (LNAPL)

March 29, 2011

Wonyong Jang, Ph.D., P.E.

Multimedia Environmental Simulations Laboratory (MESL) School of Civil and Environmental Engineering Georgia Institute of Technology, Atlanta, GA

Introduction to Multiphase Flow

 Multiphase flow means "the simultaneous movement of multiple phases, such as water, air, non-aqueous phase liquid (NAPL), through porous media."

Capillary Pressure between Phases

Mathematical Approach for Multiphase Flow

Governing equations: Groundwater, gas, and NAPL

$$\frac{\partial (\phi s_f \rho_f)}{\partial t} + \nabla \cdot (\rho_f \boldsymbol{q}_f) = I_f + Q_f$$
$$\boldsymbol{q}_f = -\frac{\mathbf{k} k_{rf}}{\mu_f} \rho_{rw} g \cdot \left(\nabla \psi_f - \left(\frac{\rho_f}{\rho_{rw}}\right) e_z \right)$$

Capillary pressure

$$\psi_{cgw} = \psi_g - \psi_w,$$

$$\psi_{cnw} = \psi_n - \psi_w,$$

$$\psi_{cgn} = \psi_g - \psi_n$$

 $\psi_f = P_f / \rho_{RW} g$

 ρ_{RW} = the reference water density f = w (water), g (gas), and n (NAPL).

• C. Pressure (ψ_c) -Saturation (s_f) -R. Permeability (k_{rf}) Relations \rightarrow Nonlinear and very complicated to solve the equations.

C. Pressure-Saturation-R. Permeability (1)

cP-S-kr relationships

• Brooks-Corey law (1964)

$$s_{we} = \frac{1 - s_n - s_{wr}}{1 - s_{nr} - s_{wr}} = \left(\frac{\psi_d}{\psi_{cnw}}\right)^{\lambda}, \quad \psi_d > \psi_{cnw}$$

$$k_{rw} = s_{we}^{\frac{2+3\lambda}{\lambda}}$$

$$k_{ro} = (s_{te} - s_{we})^2 \left(s_{te}^{\frac{2-\lambda}{\lambda}} - s_{w}^{\frac{2-\lambda}{\lambda}} \right)$$

- ψ_d is the air-entry pressure head of the air-water system.
- λ is the pore size distribution.

Size index	
SIZE INDEX	
Entry Pr. (Pd)	0.509
Residual Sw	0.
Residual Sn	0.

1000000.0

$$\nabla \psi_{cnw} = \frac{\mathrm{d}\psi_{cnw}}{\mathrm{d}s_n} \nabla s_n = D_{cnw} \nabla s_n$$

C. Pressure-Saturation-R. Permeability (2)

cP-S-kr relationships

• van Genuchten law (1980)

$$s_{we} = [1 + (\alpha \beta_{nw} \psi_{nw})^n]^{-m} \qquad \psi_{nw} > 0$$

 $s_{we} = 1$ $\psi_{nw} \le 0$

$$s_{te} = \begin{bmatrix} 1 + (\alpha \beta_{gn} \psi_{gn})^n \end{bmatrix}^{-m} \qquad \psi_{gn} > 0 \qquad \qquad s_t = s_w + s_n \\ s_t = \text{Total liquid saturation} \end{cases}$$

$$s_{te} = 1$$
 $\psi_{gn} \le 0$

m = 1 - 1/n

- α (L⁻¹) and n (dimensionless) are empirical parameters describing soil media
- β_{gn} and β_{nw} are the scaling factors

Three-Phase Systems in the Shallow Aquifer

- Mobile phases: Water and NAPL
- Constant pressure head: Gas
 - The soil gas in the unsaturated zone is connected to the atmosphere.
 - The gas movement has negligible impacts on the movement of water and NAPL.

$$\frac{\partial \left(\phi \rho_w (1 - s_n + s_g)\right)}{\partial t} = \nabla \left(\frac{k \rho_w k_{rw}}{\mu_w} \rho_{RW} g\left(\nabla \psi_w + \frac{\rho_w}{\rho_{RW}} e_z\right)\right) + Q_w$$

$$\frac{\partial (\phi \rho_n s_n)}{\partial t} = \nabla \left(\frac{k \rho_n k_{rn}}{\mu_n} \rho_{RW} g\left(\nabla (\psi_w + \psi_{cnw}) + \frac{\rho_n}{\rho_{RW}} e_z\right)\right) + I_n + Q_w$$

$$s_w + s_g + s_n = 1.$$

$$\psi_n = \psi_w + \psi_{cnw}$$

- Primary variables: ψ_w and s_n
- Secondary variables: ψ_n , s_w , s_g

Water-NAPL Two-Phase System

- Mobile phases: Water and NAPL
- No gas phase
- Example: CO₂ injection in deep geological systems

$$\begin{split} s_{w} + s_{n} &= 1. \\ \frac{\partial(\phi \rho_{w}(s_{n}))}{\partial t} &= \nabla \left(\frac{k \rho_{w} k_{rw}}{\mu_{w}} \rho_{RW} g \left(\nabla \psi_{w} + \frac{\rho_{w}}{\rho_{RW}} e_{z} \right) \right) + Q_{w} \\ \frac{\partial(\phi \rho_{n} s_{n})}{\partial t} &= \nabla \left(\frac{k \rho_{n} k_{rn}}{\mu_{n}} \rho_{RW} g \left(\nabla (\psi_{w} + \psi_{cnw}) + \frac{\rho_{n}}{\rho_{RW}} e_{z} \right) \right) + I_{n} + Q_{w} \\ \downarrow \\ \nabla \psi_{cnw} &= \frac{d \psi_{cnw}}{ds_{n}} \nabla s_{n} = D_{cnw} \nabla s_{n} \end{split}$$

Numerical Techniques

Global implicit scheme

- Solves multiphase flow equations simultaneously.
- Generates a non-symmetric global matrix.

- Upstream weighting scheme (Upwind scheme)
 - Relative permeability is evaluated based on a flow direction.

Sparse matrix solvers

- Iterative matrix solver: IML++
 - Failed when the global implicit scheme is used.
- Direct matrix solver: Pardiso solver
 - <u>Works good</u> with the global implicit scheme.

Buckley-Leverett Problem

- Buckley-Leverett problem represents a linear water-flood of a petroleum reservoir in a one-dimensional, horizontal domain.
 - The pore spaces of the domain is initially filled with a NAPL, i.e., liquid oil.

Properties	Values	Darcy velocity = 0.01 m/s
Bounda	ry condition	
Water influx at x=0 m Water pressure at x=300 m NAPL saturation at x=0 m (Sw at x=0 m)	$v_w = 0.01$ m/s, BC Type II $p_w = 2.9$ m H ₂ O, BC Type I $s_n = 0.1$, BC Type I $(s_w = 0.9$, BC Type I)	
Initial	condition	
Water saturation NAPL saturation	$s_w = 0.1$ $s_n = 0.9$	

Buckley-Leverett Problem (contd.)

Parameters

Properties	Values	Comment
Soil		
Intrinsic permeability	10^{-11} m^2	
Porosity	0.3	
Pore size distribution index	2.0	Brook-Corey law
Water residual saturation	$s_{wr} = 0.1$	
NAPL residual saturation	s _{nr} = 0.1	
Fluid		
Water density	$\rho_w = 1000 \text{ kg/m}^3$	
NAPL (oil) density	$\rho_n = 900 \text{ kg/m}^3$	
Water viscosity	$\mu_w = 0.001 \text{ Pa s}^{-1} \text{ (kg/ms)}$	
NAPL(oil) viscosity	$\mu_n = 0.005 \text{ Pa s}^{-1} \text{ (kg/ms)}$	

Buckley-Leverett Problem (Results)

Comparison of water saturation profiles

- Semi-analytical solution vs. TechFlowMP results
- Coarse and dense meshes

Domain size, Length	L = 5 m	
Space step size, SD-A	$\Delta x = 0.1 \text{ m}$	Coarse grid
Space step size, SD-B	$\Delta x = 0.025 \text{ m}$	Dense grid

McWhorter-Sunada Problem

• The flows of water and NAPL are initiated by the capillary pressure between two phases in a domain.

Properties	Values
Bou	indary condition
Water pressure (x=0 m,t) Water pressure(x=5 m,t) NAPL saturation (x=0 m,t) (Water saturation (x=0 m,t)) NAPL saturation (x=5 m,t)	$\psi_w = 19.885 \text{ m H}_2\text{O}, \text{ BC Type I}$ No flux/flow boundary $\mathbf{s_n} = \mathbf{0., BC Type I}$ $(\mathbf{s_w} = \mathbf{1., BC Type I})$ No flow boundary
In	itial condition
Water saturation (x, t=0) NAPL saturation (x, t=0) Water pressure (x, t)	$s_w = 0.01$ $s_n = 0.99$ $\psi_w = 19.885 \text{ m H}_2\text{O}$ $(P_w = 195000 \text{ Pa})$

McWhorter-Sunada Problem (contd.)

Properties	Values	Remark
	Soil	
Soil intrinsic permeability	10^{-11} m^2	
Porosity	0.3	
Pore size distribution index	2	Brook-Corey law
Entry pressure, P _d	5000 Pa (ψ_w =0.5099 mH ₂ O)*	1 mH ₂ O=9806.65Pa
Water residual saturation	$s_{wr} = 0.$	
NAPL residual saturation	$s_{nr} = 0.$	
Fluid		
Water density	$\rho_{\rm w} = 1000 \ kg/m^3$	
NAPL (oil) density	$\rho_n = 1000 \text{ kg/m}^3$	
Water viscosity	$0.001 \text{ Pa s}^{-1} (= \text{kg/m s})$	
NAPL(oil) viscosity	$0.001 \text{ Pa s}^{-1} (= \text{kg/m s})$	

Do	omain and space discretization	
Domain size, Length Space step size	$L = 2.6 \text{ m}$ $\Delta x = 0.01 \text{ m}$	260 elements
Water viscosity NAPL(oil) viscosity	0.001 Pa s ⁻¹ (= kg/m s) 0.001 Pa s ⁻¹ (= kg/m s)	
Time discretization		
Simulation time Time step size	T = 10,000 s $\Delta t = 1 - 100 \text{ s}$ (Max. 15 iterations)	

McWhorter-Sunada Problem (contd.)

- The change in water saturation over time
 - Semi-analytical solutions vs. TechFlowMP results
 - The global implicit scheme, upwind scheme, and Pardiso solver are implemented.

NAPL Release at the Ground Surface

• NAPL's release into the variably saturated zone.

- Three phases: water, gas, and NAPL.
- A NAPL is released for 600 sec.

 $(\Delta t = 0.01 - 8 \text{ sec})$

NAPL Release at the Ground Surface (contd.)

NAPL's spreading with time.

NAPL Release at the Ground Surface (contd.)

- The spreading of the released NAPL is expected to be completely within a relatively short period of time.
- The immobilized NAPL becomes a longlasting contaminant source.

GW Pollution in the Hadnot Point Industrial Area

• HPIA, Camp Lejeune, NC.

Parameters	Description
Domain size	Length in x-axis: 8200.0 ft (Δ x=50 ft) Length in y-axis: 6450.0 ft (Δ y=50 ft) Depth: from 7.47161 ft to -240.744 ft Origin: (X= 2497210.0 ft, Y=335640.0, Z=0.0)
Grid	Total number of rows (Cells i): 129 Total number of columns (Cells j): 164 Total number of layers (Cells k): 7 Number of nodes: 171,600 Number of cells: 148,092 (No. active cells: 99,352; inactive cells: 48,740)
Elevation	Number of elevation data: 148,092 Minimum value: -240.744 ft Maximum value: 7.47161 Mean: -98.2263, Median: -77.2142 Reference time: 12/30/1988
Stress period	240 (from 1/1/11942 to 1/1/1962 = 7305 days)

Application to GW Pollution in HPIA (contd.)

- NAPL at HPIA, Camp Lejeune, NC.
 - Contaminant sources are immobilized NAPLs.
 - The dissolution of the immobile NAPL and its transport in the whole domain will be investigated.

• The migration of the NAPL can be analyzed within a very limited region around the source area.

Thank you.

Questions?

References

- Brooks, R.H. and Corey, A.T., 1964. Hydraulic Properties of Porous Media. Hydrology Paper 3., 27 pp., Colorado State University, Fort Collins, Co.
- Helmig, R., 1997. Multiphase flow and transport processes in the subsurface : a contribution to the modeling of hydrosystems. Environmental engineering. Springer, Berlin ; New York, xvi, 367 p. pp.
- van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892-898.