

Optimal Sensor Placement for Wind-Driven Lakes

Kijin Nam and Mustafa M. Aral

Multimedia Environmental Simulation Lab (MESL) (<u>http://mesl.ce.gatech.edu/</u>)

School of Civil and Environmental Engineering Georgia Institute of Technology

Needs to design a water quality monitoring system

- Requirement of water quality monitoring increases due to increasing health risk from degrading water quality.
 - Setting up and running a monitoring network is very costly and the performance depends on its design.
 - Monitoring locations are one of the most important factors.
 - However, a clear strategy to design a water quality monitoring network does not exist.

MESL @ GA Tech

EWRI 2007

Where are the best monitoring locations? And How many?

Optimization of Sensor Locations - Objective

- Minimize detection time
 - Early detection allows more time to respond and helps to maximize usability of water body.
- Decision variables
 - Sensor locations
- Objective function

$$\min f(X) = \frac{1}{S_n} \sum_{i=1}^{S_n} t_d^{s_i}(X, t_r^{s_i}, \mathbf{x}_r^{s_i})$$

 $t_d^{s_i}(X, t_r^{s_i}, \mathbf{x}_r^{s_i})$: Detection time of scenario s_i $t_r^{s_i}$: Time of contaminant release of scenario s_i $\mathbf{x}_r^{s_i}$: Location of contaminant release of scenario s_i \mathbf{x}_i : Location of a sensor $X = {\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_n}$: Sensor distribution S_n : Number of all scenarios MESL @ GA Tech

Procedure

- What hydrodynamics and contaminant source conditions we have
 - Forcing for hydrodynamics
 - Source locations, release times
- Simulate every hydrodynamics scenario using the finite element method
- Simulate every contaminant transport scenario using the finite element method
- Calculate detection time at possible sensor locations
- Optimize sensor locations to minimize detection time using the genetic algorithm

Simulation of Physics

 Shallow water simulation

$\frac{\partial h}{\partial t} + \frac{\partial (hU)}{\partial x} + \frac{\partial (hV)}{\partial y} = 0$	
$\frac{\partial(hU)}{\partial t} + \frac{\partial(hUU)}{\partial x} + \frac{\partial(hVU)}{\partial y} + \frac{\partial(hVU)}{\partial y}$	$-E_{H}\left(\frac{\partial^{2}(hU)}{\partial x^{2}}+\frac{\partial^{2}(hU)}{\partial y^{2}}\right)+gh\frac{\partial\eta}{\partial x}-\tau_{sx}+\tau_{bx}=0$
$\frac{\partial(hV)}{\partial t} + \frac{\partial(hUV)}{\partial x} + \frac{\partial(hVV)}{\partial y} - \partial(h$	$-E_{H}\left(\frac{\partial^{2}(hV)}{\partial x^{2}} + \frac{\partial^{2}(hV)}{\partial y^{2}}\right) + gh\frac{\partial\eta}{\partial y} - \tau_{sy} + \tau_{by} = 0$

 Contaminant transport simulation

$$\frac{\partial(hC)}{\partial t} + \frac{\partial(UhC)}{\partial x} + \frac{\partial(VhC)}{\partial y}$$
$$= \frac{\partial}{\partial x} \left(D_{xx} \frac{\partial(hC)}{\partial x} \right) + \frac{\partial}{\partial x} \left(D_{xy} \frac{\partial(hC)}{\partial y} \right) + \frac{\partial}{\partial y} \left(D_{yx} \frac{\partial(hC)}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{yy} \frac{\partial(hC)}{\partial y} \right)$$

 Finite Element Method on a parallel computing environment

Optimization – Genetic Algorithm

- Genetic algorithm
 - Suitable for complex objective functions
 - Does not require any gradient calculation
 - Does not fall into local optima easily
- Genetic algorithm can be parallelized
 - Island model
 - Helps to keep diversity
- The optimization routine searches the best nodes instead of x and y-coordinate.

Chromosome and Evaluation

- Each gene represents a nodal index in a mesh, where a sensor is placed.
 - Simpler and more straightforward than a bit-string
 - The problem becomes an integer programming.
- Evaluation of fitness: Calculate how long it takes for a contaminant to reach to one of sensors.

Test Problem - Circular Lake

- To test the ability of the proposed approach, a circular lake with a wind-driven flow is set up and tested.
 - Deep at the center, shallow along the shoreline
 - Wind from the east
 - Flow reaches to a steady state.
 - Elements on the shoreline are regarded as possible source locations.

MESL @ GA Tech

Circular Lake – Flow Pattern

EWRI 2007

Circular Lake – Contaminant Transport

Circular Lake – Optimized Locations

Lake Pontchartrain – Flow Pattern

• Similar setting as the circular lake case

Lake Pontchartrain – Optimized Locations

Wind from the south and east

EWRI 2007

Wind from the east

 Evenly distributed along the shoreline regardless of wind direction

Lake Pontchartrain

EWRI 2007

- Average detection time vs. # of sensors
 - As the number of sensor increases, the average detection time decreases.
 - Provide trade-off between detection time and the number of sensors (= cost)

Conclusions

- Locations of monitoring sensors are critical factors of the performance of monitoring sensors.
- The Combination of numerical simulation and genetic algorithm shows promising results on a realistic way.
 - This approach may provide valuable information for decision makers to set up a monitoring system.
- In wind-driven lakes with a steady-state, best sensor locations will be places along a shoreline.

Current Work

- Finding a best path to measure, instead of several fixed sensor locations
 - Measurement using a remote-controlled boat may be an easier and dynamic solution.
- Optimization of Multiple objectives
 - # of sensors
 - What part of a domain should be protected more

MESL @ GA Tech

Unsteady state problems are being solved.