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COMPLEXITIES.........COMPLEXITIES.........

MultiMulti--pathway flow and contaminant pathway flow and contaminant 
transport problem.transport problem.
Integrated modeling of all pathways is the Integrated modeling of all pathways is the 
key.key.
Each process pathway has its own Each process pathway has its own 
characteristic scale.characteristic scale.
What should be the optimal scale of a What should be the optimal scale of a 
fully integrated model?fully integrated model?



MODELING TOOLSMODELING TOOLS

Lumped parameter modelsLumped parameter models

Distributed parameter modelsDistributed parameter models
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WHAT IS A SCALE?WHAT IS A SCALE?

Spatial or temporal dimensions at Spatial or temporal dimensions at 
which entities, patterns, and which entities, patterns, and 
processes can be observed and processes can be observed and 
characterized to capture the characterized to capture the 
important details of a important details of a 
hydrologic/hydrologic/hydrogeologichydrogeologic process.process.



SCALINGSCALING

The transfer of data or information The transfer of data or information 
across scales or linking subacross scales or linking sub--process process 
models through a unified scale is models through a unified scale is 
referred to as referred to as ““scaling.scaling.””



FRAME OF REFERENCEFRAME OF REFERENCE

Absolute  and Relative frame of Absolute  and Relative frame of 
referencereference

Precipitation

2-D Overland Flow Model

1-D Channel Flow Model

2-D Saturated
Zone Model

1-D Unsaturated
Zone Model



SCALE EFFECTSSCALE EFFECTS

Heterogeneity.Heterogeneity.

SubSub--process scales.process scales.

Nonlinearity.Nonlinearity.



SCALING PROBLEMSSCALING PROBLEMS

When largeWhen large--scale models are used to scale models are used to 
predict smallpredict small--scale events, or when smallscale events, or when small--
scale models are used to predict largescale models are used to predict large--
scale events, problems may arise.scale events, problems may arise.

Problems also arise when integrated Problems also arise when integrated 
models are used across scales.models are used across scales.



FUNCTIONAL SCALEFUNCTIONAL SCALE

At what spatial and temporal scale At what spatial and temporal scale 
does the final model performs does the final model performs 
optimally; and,optimally; and,

What scale should be selected to What scale should be selected to 
implement the final integrated implement the final integrated 
model? model? 



SUBSUB--PROCESSESPROCESSES

Integrated river channel flow and 
groundwater flow.

Integrated overland flow, 
unsaturated and saturated 
groundwater flow.

Integrated watershed model.



COUPLED SURFACE WATER AND COUPLED SURFACE WATER AND 
GROUNDWATER FLOW MODELGROUNDWATER FLOW MODEL
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COUPLING OVER THE INTERFACECOUPLING OVER THE INTERFACE

Type-3 boundary condition of the groundwater flow model 
couples with the lateral inflow/outflow term in the stream 
flow equation

q

?



Analysis domain

Groundwater flow discretization
Channel network

Channel flow discretization

COUPLED SYSTEMCOUPLED SYSTEM
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APPLICATIONAPPLICATION

Simulation scenarios:

• Two set of runs are done to simulate:
lateral flow from stream to groundwater and from groundwater to 
stream
Time lag between the timing of stream flow peak and 
groundwater head peak
Flow reversal conditions

RUN-1: Lateral flow towards groundwater flow domain
RUN-2: Lateral flow towards stream flow domain



Groundwater flow modelGroundwater flow model

• Initial conditions: RUN-1: hg = 32 m

RUN-2: hg = 35 m

APPLICATIONAPPLICATION

• Boundary conditions:

No flux boundary, q = 0

No flux boundary, q = 0

Fixed head boundary
RUN-1: h = 32 m
RUN-2: h = 35 m

Fixed head boundary
RUN-1: h = 32 m
RUN-2: h = 35 m

Head-dependent boundary



APPLICATIONAPPLICATION
Boundary and Initial Conditions:

Stream flow modelStream flow model

• Upstream BC: Trapezoidal discharge hydrograph

• Initial conditions: Uniform flow discharge    Q = 100cms 
Uniform flow depth           d = 3.57m

• Downstream BC: Single-valued rating curve that maps 
the discharge to its uniform flow depth
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COUPLED OVERLAND FLOW AND COUPLED OVERLAND FLOW AND 
SAT/UNSAT GROUNDWATER MODELSAT/UNSAT GROUNDWATER MODEL



2-D

2-D

1-D

INTEGRATED MODELINTEGRATED MODEL

Two dimensional 
finite element modeling

One dimensional 
finite difference modeling

Two dimensional 
finite element modeling
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COUPLING OVER INTERFACESCOUPLING OVER INTERFACES

• At the ground surface, overland flow and unsaturated 
zone models are coupled via the infiltration flux.

• Infiltration flux becomes a sink/source term in 
overland flow model.

• The top boundary condition for the unsaturated 
column depends on the presence of overland flow.

Present Not present

Head condition Flux condition



APPLICATIONAPPLICATION
Simulation scenarios:

• Response of clay and sand soils to a two-peaked 
precipitation event to simulate:

Response of overland flow generation to different soil types
Response of groundwater recharge to different soil types
Response of unsaturated column moisture migration to 
intermittent rainfall
Response of groundwater levels to arbitrary precipitation 
events over different soils
Interactions between different pathways

RUN-1: Clay soil
RUN-2: Sand soil



APPLICATIONAPPLICATION
Physical Setup:

• 40 m wide X 500 m long hypothetical rectangular 
plot
0 < x < 500 m    and    0 < y < 40 m

• Uniform slope in x-direction, Sox = 0.001 m/m
• No slope in y-direction, Soy = 0.0 m/m
• Essentially one-dimensional flow
• Response to a two-peaked precipitation event:
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RESULTSRESULTS –– Overland flow depth time seriesOverland flow depth time series
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RESULTS RESULTS –– Groundwater head time seriesGroundwater head time series
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RESULTSRESULTS –– Unsaturated zone moisture Unsaturated zone moisture 
distributiondistribution
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SCALES OF IMPORTANCESCALES OF IMPORTANCE

10103 - 1010610103 - 10106Saturated GW Saturated GW 
zonezone

10102 - 1010510103 - 10106River Channel River Channel 
flowflow

0.1 0.1 -- 1010210 10 -- 10104Overland flowOverland flow

0.1 0.1 -- 101020.01 0.01 -- 1010Unsaturated Unsaturated 
GW zoneGW zone

Time (sec)Time (sec)Space (cm)Space (cm)



HYBRID MODELS ARE THEHYBRID MODELS ARE THE

SOLUTION TO INTEGRATEDSOLUTION TO INTEGRATED

WATERSHED MODELING WATERSHED MODELING 
SYSTEMSSYSTEMS



APPLICATION:APPLICATION:

Analysis of Coastal Georgia Ecosystem
Stressors Using GIS Integrated Remotely
Sensed Imagery and Modeling:
A Pilot Study for Lower Altamaha River Basin

http://groups.ce.gatech.edu/Research/MESL/research/altamaha/index.htm

Georgia Sea Grant College Program of the National Sea Grant Program. 
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ALTAMAHA RIVER SYSTEM
Data Required

• Channel slopes, bottom elevations,
cross-section top width vs depth data

• Roughness coefficients
• Discharge hydrographs at upstream BCs
• Rating curve at downstream exit point
• Groundwater BCs data
• Unconfined aquifer thickness data
• Aquifer conductivity data
• Infiltration data
• Well data
• River bottom sediment conductivity

and thickness data

Data Available

•Topography data

•Gage discharge data

•Precipitation data

•Cross-section data at 
bridges



BASIN REPRESENTATIONBASIN REPRESENTATION
for LUMPED PARAMETER PROCESESfor LUMPED PARAMETER PROCESES

Land discretizationLand discretization
BASINS automatic delineation toolBASINS automatic delineation tool
National Hydrographic Dataset (NHD) reach National Hydrographic Dataset (NHD) reach 
file and Digital Elevation Model (DEM) data file and Digital Elevation Model (DEM) data 
89 sub89 sub--watershedswatersheds
352 PERLN352 PERLN
30 IMPLND30 IMPLND



BASINS Automatic DelineationBASINS Automatic Delineation



Basins RepresentationBasins Representation

Land discretizationLand discretization
Land UseLand Use

11.411.472,63172,631Mixed Forest LandMixed Forest Land

0.30.32,1252,125Barren LandBarren Land

%%Area (acres)Area (acres)Land UseLand Use

1.71.710,77610,776Urban or BuildUrban or Build--up Land up Land 

30.730.7196,084196,084Cropland and Pasture Cropland and Pasture 

44.644.6285,147285,147Evergreen Forest LandEvergreen Forest Land

100100639,272639,272TOTALTOTAL

10.510.567,34567,345Forested WetlandsForested Wetlands

0.80.85,1645,164WaterWater



Meteorological DataMeteorological Data
Precipitation (PREC)Precipitation (PREC)

Stations: Stations: JesupJesup and Dublinand Dublin
Fill in missing data Fill in missing data –– Normal Ratio Method Normal Ratio Method 
JesupJesup →→ JacksonvilleJacksonville--SavannahSavannah--DublinDublin
Dublin Dublin →→ MaconMacon

Potential Potential EvapotranspirationEvapotranspiration (PETINP)(PETINP)
JesupJesup

Potential Evaporation (POTEV)Potential Evaporation (POTEV)
JesupJesup



For modeling: For modeling: JesupJesup and Dublinand Dublin



InflowsInflows

CalibrationCalibration
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Reidsville, GA
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Baxley, GA
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Doctortown, GA
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Comparison of results for Comparison of results for 19881988--19951995



Detailed comparison of results for Detailed comparison of results for 19891989



Detailed comparison of results for Detailed comparison of results for 19941994



Comparison of results for a Comparison of results for a low flowlow flow period period 



Comparison of results for a Comparison of results for a high flowhigh flow period period 



GROUNDWATERGROUNDWATER



GW CROSS SECTIONGW CROSS SECTION
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CONCLUSIONSCONCLUSIONS

Order of importance of the subOrder of importance of the sub--process;process;

Domain of importance;Domain of importance;

Functional scales; and,Functional scales; and,

Hybrid modeling concepts Hybrid modeling concepts 



CONCLUSIONSCONCLUSIONS

Selection of the smallest scale in an Selection of the smallest scale in an 
integrated model as functional scale is not integrated model as functional scale is not 
possible.possible.

Hybrid modeling approach is necessary.Hybrid modeling approach is necessary.

Functional scale based on .....Functional scale based on .....
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For additional information or For additional information or 
questions, you may contact:questions, you may contact:

M. M. Aral: maral@ce.gatech.edu
http://groups.ce.gatech.edu/Research/MESL/

MESLMESLMESL


