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SCHEMATIC OF AN INTEGRATED
WATERSHED MODEL

2-D Overland Flow Model

Precipitation

1-D Channel Flow Model

1-D Unsaturated |
Zone Model

2-D Saturated
Zone Model




COMPLEXITIES

Mul-pathway flevw and centaminant
iransport preblen.

Integratedi modeling of all patiways Is the

key.
EQCH PRECESS patway: has Its 6wWn
characteristic scale.

Wihat sihouldibe the' optimal scale off a
fully/ Integrated model?




MODELING TOOLS

Lumped parameter moedels

Pistripuited! parameter medels




MAP ALGEBRA

Regional Response Curve
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MAP CALCULUS
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WHAT IS5 A SCALE?

Spatial er temporal dimensions at
Which entities; patterns, and

PreECESSES can| e ohser/ed and
characterized tercapture the
Impertant detalls ofi a
hydrelegic/hydrogeologic Process.




SCALING

The transter of data or Infermation
ACress scales or linking SUb-pPrecess

moedels throughia unified scale Is
referred te as' scaling.”




FRAME OF REFERENCE

2-D Overland Flow Model

Precipitation e
N 1-D Channel Flow Model

1-D Unsaturated
Zone Model

2-D Saturated
Zone Model

Absolute and’ Relative frame. of
reference




SCALE EFFECTS

IHeterogenelty.

SUB-pPrecess scales:

Nenlineanity.




SCALING PROBLEMS

When large-scale medels are used to
predict small-scale events, or When small-
scale models are used te predict large-
scale evenits, preklems may; arise.

Preblems alse arise When Iintegrated
models are used across scales.




FUNCTIONAL SCALE

At what spatial and temporal scale
dees the finallmodell perferms

eptimally; and,

\Whait scale should be selected to

Implement the finallintegrated
model?




SUB-PROCESSES

Integrated river channel flow and
groundwater flow.

Integrated overland flow,
unsaturated and saturated
groundwater flow.

Integrated watershed model.




COUPLED SURFACE WATER AND
GROUNDWATER ELLOW MODEL

Channel flow
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COUPLING OVER THE INTERFACE

AQUIFER

T Impervious Layer

Type-3 boundary condition of the groundwater flow model
couples with the lateral inflow/outflow term in the stream
flow equation




COUPLED SYSTEM

Analysis domain
Channel network
Groundwater flow discretization

Channel flow discretization




GLOBAL MATRIX EQUATION




DISCRETIZATION OF DOMAIN

groundwater
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APPLICATION

Simulation scenarios:

e Two set of runs are done to simulate:

v lateral flow from stream to groundwater and from groundwater to
stream

v Time lag between the timing of stream flow peak and
groundwater head peak

v" Flow reversal conditions

RUN-1: Lateral flow towards groundwater flow domain
RUN-2: Lateral flow towards stream flow domain




APPLICATION

Groundwater flow model

 |nitial conditions: RUN-1; hg =32m
RUN-2: hg =35m

e Boundary conditions:

No flux boundary, q =0 Head-dependent boundary

Fixed head boundary Fixed head boundary
RUN-1:h=32m RUN-1: h=32m
RUN-2: h=35m RUN-2: h=35m

No flux boundary, =0




APPLICATION

Boundary and Initial Conditions:

Stream flow model

e Initial conditions: Uniform flow discharge Q =100cms
Uniform flow depth d=3.57m

« Upstream BC: Trapezoidal discharge hydrograph
Q (cms)t

350

100

iO il » t(days)
* Downstream BC: Single-valued rating curve that maps
the discharge to its uniform flow depth
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t=0 days

t=5 days

t=10 days
t=15 days
t=20 days
t=25 days
t=30 days
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t=0 days
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COUPLED OVERLAND ELOW AND
SAT/UNSAT GROUNDWATER MODEL

Overland
Flow Zone

Overland flow surface

Unsaturated
Flow Zone

Saturated
Flow Zone

Soil surface
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INTEGRATED MODEL

==
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: 1-D

2-D
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Two dimensional
finite element modeling

One dimensional
finite difference modeling

Two dimensional
finite element modeling




OVERLAND, UNSATURATED and SATURATED
GROUNDWATER MODEL STRUCTURE

2-D Overland flow
discretization

Static
ground™
surface

1 1-D Unsaturated :'

\groundwater flow/
2-D Saturated | discretization

groundwater flow
discretization~

Dynamic
water —
table

Impervious
strata —




COUPLING OVER INTERFACES

At the ground surface, overland flow and unsaturated
zone models are coupled via the infiltration flux.
Infiltration flux becomes a sink/source term in
overland flow model.

The top boundary condition for the unsaturated
column depends on the presence of overland flow.

Y BB

Present Not present

v' Head condition v" Flux condition




APPLICATION

Simulation scenarios:

Response of clay and sand solls to a two-peaked
precipitation event to simulate:

v Response of overland flow generation to different soil types

v Response of groundwater recharge to different soil types

v Response of unsaturated column moisture migration to
intermittent rainfall

v Response of groundwater levels to arbitrary precipitation
events over different soils

v" Interactions between different pathways

RUN-1: Clay soll
RUN-2: Sand soll




APPLICATION

Physical Setup:

40 m wide X 500 m long hypothetical rectangular
plot
0<x<500m and O0<y<40m

Uniform slope in x-direction, S, = 0.001 m/m
No slope in y-direction, S,, = 0.0 m/m
Essentially one-dimensional flow

Response to a two-peaked precipitation event:
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RESULTS — Overland flow: depth time series
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RESULTS — Groundwater head time Series

SANDY SOIL r CLAY SOIL
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RESULTS — Unsaturated zone: moisture
distripution

NODE 13 NODE 243

(w) uoneas|3
(w) uoneas|3

| ‘ | ‘ | | | | |
-0.4 -0.2 0 i -0.6 -0.4 -0.2 0
Pressure Head (m) Pressure Head (m)

Both soils, t=0sec

Sandy soil, t=9000sec

——+—— Clay soil, t=9000sec
Sandy soil, t=18000sec
Clay soil, t=18000sec




SCALES OF IMPORTANCE

Space (cm)

Time (sec)

Unsaturated
GW zone

0.01 - 10

0.1-1072

Overland flow.

10 - 104

0.1-10°

River Channel
o

103 - 106

102 - 10°

Saturated GW
Z0Ne

103 - 106

103 - 106




HYBRID MODELS ARE THE

SOLUTION TO INTEGRATED

WATERSHED VIODELING
SYSTEMS




APPLICATION:

Analysis of Coastal Georgia Ecosystem
Stressors Using GIS Integrated Remotely
Sensed Imagery and Modeling:

A Pilot Study for Lower Altamaha River Basin
Program of the National Sea Grant Program.

http://groups.ce.gatech.edu/Research/MESL/research/altamaha/index.htm




ALTAMAHA APPLICATION




ALTAMAHA RIVER SYSTEM

Data Available Data Required

*Topography data e Channel slopes, bottom elevations,
cross-section top width vs depth data
*Gage discharge data ¢ Roughness coefficients
Discharge hydrographs at upstream BCs
*Precipitation data Rating curve at downstream exit point
Groundwater BCs data
*Cross-section data at ¢ Unconfined aquifer thickness data
bridges o Aquifer conductivity data
 Infiltration data
« Well data
* River bottom sediment conductivity
and thickness data




BASIN REPRESENTATION
forr LUMPED PARAMETER PROCESES

Land discretization
s BASINS autematic delineation teel

s National Fydrogiaphic Dataset (NHD) reach
file and' Digitall Elevation Medel (DEM) aata

m 89 sub-watersheds
x 352 PERLN
x 30 IMPLENID




BASINS Automatic Delineation




[Basins Representation

Landidiscretization
= Land Use

Land Use Area (acres)
Urlsan;er Bulld=up: Land 10,776
Cropland and Pasture 196,084
Evergreen Forest Land 285,147
Mixed Forest Land 72,631
WWater 5,164
Eerested Wetlands 67,345
Barren Land 2,125

TOTAL 639,272




\Vieteorolegical Data

Precipitation (PREC)

a Stations: Jesup and Duklin

a ElllNin missing datel = Normal Ratie Viethed
Jestupr— Jacksoenville-Savannah-Dulslin

Dublint— Macon

Poetentiall Evapetranspiration (PEIHNE)
m Jesup

Poetentiall Evaperation (POTEY)



Eor modeling: Jesup and Duklin

Average Annual Precipitation

. Faor information on the PRISM
Georgia rodeling systern, visit the
SCAS web site at
Copyright 2000 by Spatial Clirnate Analysis Service, http:frararar ocs orst echatprisrn
Cregon State University
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The latest PRISM digital data i W,
sets ereated by the SCAS can o
be obtamed from the Climate
Source at

http:irarana climatesource corm

¢ Precipitation Stations

This 15 a map of annual precipitation averaged over |:I Watersh_ed ) i
the period 1961-1990. Station ohservations were Cataloging Unit Boundaries
collected from the WOAA Cooperative and i

USDA-NRCS SnoTel networks, plus other state and [__| state Boundaries
local networks. The PRISM modeling system was
used to create the gridded estirnates from which this i
map was made. The size of each gnid pixel is 40 0 20 9.0 Miles
approzimately 4x4 lan. Support was provided by

the NMRECE Water and Climate Center. _._,___‘_____________




Outlets
s Linking stream added Outlet
« Manually added Outlet
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ALTAMAHA RIVER SYSTEM
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Ohoopee River at
Reidsville, GA
USGS 02223500

iy I
RS .=
St o
SIS PR A \
SO Fao \
SSn NS Ny S Yooy !
PSS L1 \

"!.

2%,
IS
5

",
oL

o

."’

7

AV L]
vass
>

S
=

<3
NSNS g
SRR

AR
W ran it tgh
Y e

Baxley, GA %
USGS 02225000

Doctortown, GA

8 0 8 16 24 32 KilometerssGS 02226000
e S S




Comparison of results for 1966-1995
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Detailed comparison of results for 19589
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Detailed comparison of results fior 1994
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Comparison ofi results for a lew flew period
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Comparison ofi results for a nigh flow period
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GROUNDWATER
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GW CROSS SECTION
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CONCLUSIONS

Order off Importance: of the: Sulb-Process;
Demainl of Impertance;

Eunctionall scales; and,

: Hylbrid modeling cencepts




CONCLUSIONS

Selection of the smallest scale inr an

Integrated moedel as fiunctienal scale s not
POSSIkIE.

HyBd Mmodeling appreachiis Necessary.

Eunctional scale based! on
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