

International Conference on Environmental Science and Technology 2007 Houston, TX

Modeling of Co-Existing Anaerobic-Aerobic Biotransformation of Chlorinated Ethenes in the Subsurface

August 6, 2007

Wonyong Jang and Mustafa M. Aral

Multimedia Environmental Simulations Laboratory (MESL) School of Civil and Environmental Engineering Georgia Institute of Technology, Atlanta

Table of Contents

- Introduction
- Study objectives
- Governing equations
 - Multiphase flow though porous media
 - Contaminant transport
- Numerical method
- Simulation scenarios and results
 - Anaerobic-only biotransformation
 - Coexisting anaerobic-aerobic biological processes
- Summary

Introduction

- Soil and groundwater contamination is often initiated by accidental spills or leakage of volatile organic compounds, including chlorinated ethenes (CEs: e.g., tetrachloroethylene, PCE, and trichloroethylene, TCE), from underground storage tanks (USTs) and hazardous landfills.
- CEs can be biologically transformed by <u>indigenous microorganisms under anaerobic and/or</u> <u>aerobic environments</u>.

Nonaqueous phase liquid (NAPL)

Biological Processes of PCE

Bio-processes

- Anaerobic condition
- Aerobic condition

Target contaminants

- Tetrachloroethylene (PCE)
- Trichloroethylene (TCE)
- cis-1,2-Dichloroethylene (cDCE)
- Vinyl chloride (VC)

*Diagram from van Htlckama Vlieg and Janssen, 2001.

Study objectives

- To develop a method to represent co-existing aerobic and anaerobic biological transformations of CEs in the subsurface.
- To investigate the effect of the co-existing biological processes on the fate and transport of CEs.

Subsurface System

Multiple phases

Multiple contaminants

- Advection
- Dispersion/diffusion
- Biological processes
- Physical/chemical reactions

Multi-species transport in multiphase flow

Numerical Approach on Multiphase Flow

From mass conservation and continuity equations

$$\frac{\partial (\phi s_f \rho_f)}{\partial t} - \nabla \cdot \left\{ \rho_f \frac{\mathbf{k}_m(k_{rf})}{\mu_f} \cdot \left[\nabla (\psi_f \rho_w g) - \rho_f \mathbf{g} \right] \right\} = I_f + \rho_f^* Q_f$$

 q_f , Darcy veloity

• Gas density $\rho_g = \rho_{air} + \gamma_g P_g + \sum_{i=1}^N C_g^i \left(1 - \frac{\rho_{air}}{\rho_v^i} \right)$ Subscript f = fluid phases (water, gas) ψ_f = Pressure head of fluid s_f = Saturation k_{rf} = Relative permeability ρ_f = Density

i = contaminants N= total number of contaminants

Contaminant concentration in gas phase

- Dense contaminant concentration increases in gas phase near NAPL-contaminant sources.
 - \Rightarrow Density-driven flow is generated.*

Contaminant Transport Equation

Multi-species in water and gas phases

$$\frac{\partial \left(\phi s_{f} C_{f}^{i}\right)}{\partial t} = \underbrace{\nabla \left(\phi s_{f} D_{f}^{i} \nabla C_{f}^{i}\right)}_{\text{Dispersion}} - \underbrace{\nabla \left(q_{f} C_{f}^{i}\right)}_{\text{Advection}} + \underbrace{I_{f}^{i}}_{\substack{f \\ \text{Bioreaction}}}$$

Biological processes: 1st order & Monod kinetics

Monod kinetics for dechlorination

$$I_{w}^{i} = \phi s_{w} \varepsilon_{X} \left(-\frac{k_{B}^{i} C_{w}^{i}}{K_{S}^{i} + C_{w}^{i}} + \frac{y_{i/i-1} k_{B}^{i-1} C_{w}^{i-1}}{K_{S}^{i-1} + C_{w}^{i-1}} \right); \quad \varepsilon_{X} = \left(\frac{K_{I}^{O_{2}}}{K_{I}^{O_{2}} + C_{w}^{O_{2}}} \right) \quad \text{co}$$

Coefficient for anaerobic bio-reaction.

Coefficient for aerobic bioreaction.

Monode kinetics for cometabolism

1st order kinetics for dechlorination

$$I_{w}^{i} = \phi s_{w} \varepsilon_{O} \left(-\frac{k_{B}^{i} C_{w}^{i}}{K_{S}^{i} + C_{w}^{i}} \right) ;$$

$$I_{w}^{i} = \phi s_{w} \varepsilon_{X} \left(\lambda_{B}^{i-1} C_{w}^{i-1} - \phi s_{w} \lambda_{B}^{i} C_{w}^{i} \right)$$

subscript i = by-product contaminant; i-1 = parent contaminant.

 $\varepsilon_{O} = \left(\frac{C_{w}^{O_{2}}}{K_{S}^{O_{2}} + C_{w}^{O_{2}}}\right)$

Oxygen utilization by cometabolism

$$I_{w}^{O_{2}} = \phi s_{w} \sum_{TCE, cDCE, VC}^{i} y_{O_{2}/i} \varepsilon_{O} \frac{k_{B}^{i} C_{w}^{i}}{K_{S}^{i} + C_{w}^{i}}$$

Numerical Method

Galerkin Finite Element Method

- Modified Picard method
- Element of domain
- Rectangular prism (8 nodes each element)

Material balance calculation

Accuracy and error checking

Numerical codes

- TechFlowMP: 3D multiphase flow and multispecies transport codes.
- Program language: C++/Microsoft Visual C++
- Supporting platform: Linux, Unix with OpenMP, and Microsoft Windows

TechFlowMP

(Graphical user interface and 3D mesh)

Simulation for PCE and its Byproducts

- Source contaminant: NAPL PCE
- Model domain: Unsaturated + Saturated zones

PCE source: Initial NAPL saturation = 10%

Modeling Scenarios and CeParameters

Simulation scenarios

- Case F-1 : Anaerobic-only bioreaction with 1st order kinetics
- Case F-2 : Coexisting anaerobic/aerobic bioreaction with 1st order kinetics
- Case M-1 : Anaerobic-only bioreaction with Monod kinetics

• Case M-2 : Coexisting anaerobic/aerobic bioreaction with Monod kinetics

Rate(day ⁻¹)	PCE	TCE	DCE	VC
	2.9×10 ⁻³	3.0×10 ⁻³	2.5×10 ⁻³	3.8×10 ⁻³
anad kinetic	coefficients ^{**}			
	PCE	ТСЕ	DCE	VC
		ICL	DCL	

 $K_S^{O_2} = 2mg / L$

a at

*Suna et al, 2001; **Haston and McCarty, 1999.

Parameters of Soil and Chemicals

Porous soi	l medium
Permeability	5.0×10 ⁻¹¹ m ²
Porosity, ϕ	0.35
Longitudinal dispersivity, α_{l}	1.0 m
Transverse dispersivity, α_T	0.01 m

Parameters	PCE	TCE	cDCE	VC
Molecular weight	465.8	131.4	96.9	62.5
Vapor density, kg/m ³	7.02	5.56	4.10	2.64
Henry constant, dimensionless	0.35	0.227	0.097	0.756
Sorption coefficient, K_{oc} , L/g	0.14	0.1	0.049	0.003
Vapor pressure, mmHg	10.6	45.1	129.3	2178.6

Concentration of PCE in Water Phase

In Case F-2, the anaerobic biotransformation of PCE decreased due to ε_x . \Rightarrow Greater PCE plume in the domain. (PCE is not biodegradable under aerobic conditions.) $\varepsilon_x = \left(\frac{K_I^{O_2}}{K_I^{O_2} + C_w^{O_2}}\right)$

Concentration of TCE in Water Phase

In Case F-2, the anaerobic biotransformation of PCE decreased due to ε_x . \Rightarrow Low TCE generation.

Concentration of DCE in Water Phase

Concentration of PCE in Gas Phase

Concentration of TCE in Gas Phase

Vaporized TCEDissolved TCE (Water phase),in the unsaturatedgenerated from thezone.dechlorination of PCE

Concentration of PCE in Water Phase

Fate of PCE and TCE

Summary

- The coefficient ε was implemented to define the ratio between aerobic and anaerobic biological processes of organic contaminants.
- Compared to the anaerobic-only bioreaction case, the case of coexisting anaerobic-aerobic bioreaction of CEs showed the higher PCE concentration in the subsurface due to reduced PCE biotransformation rates under the presence of oxygen.
- The availability of oxygen is an important factor to determine the concentrations of PCE and its byproducts. The concept of coexisting anaerobic-aerobic bioreaction could be used to effectively delineate complex biological processes in the transport modeling of organic compounds in the subsurface.

Thank you

Reference

- Alvarez-Cohen, L. and Speitel, G.E. 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation. 12(2): 105-126.
- Haston, Z.C. and McCarty, P.L., 1999. Chlorinated ethene half-velocity coefficients (K-s) for reductive dehalogenation. Environmental Science & Technology, 33(2): 223-226.
- Jang, W. and Aral, M.M., 2006. Density-driven transport of volatile organic compounds and its impact on contaminated groundwater plume evolution. Transport in Porous Media.
- Suna, Y., Petersen, J.N. and Bearc, J., 2001. Successive identification of biodegradation rates for multiple sequentially reactive contaminants in groundwater. Journal of Contaminant Hydrology, 51(1-2): 83-95
- van Htlckama Vlieg, J.E.T. and Janssen, D.B., 2001. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. Journal of Biotechnology, 85(2): 81-102.