Numerical simulation of two-phase Darcy-Forchheimer flow during CO_2 injection into deep saline aquifers

Andi Zhang Feb. 4, 2013

Darcy flow VS non-Darcy flow

□ Darcy flow

A linear relationship between volumetric flow rate (Darcy velocity) and pressure (or potential) gradient

Dominant at low flow rates

$$-\nabla \Phi = \frac{\mu v}{k}$$

 Φ is the flow potential;

 μ is the viscosity;

v is the Darcy velocity;

k is the intrinsic permeability

□ Non-Darcy flow

Any deviations from the linear relation may be defined as non-Darcy flow

Interested in the nonlinear relationship that accounts for the extra friction or inertial effects at high pressure gradients/ high velocity

Non-Darcy flow equations

Forchheimer equation

 $-\nabla \Phi = \frac{\mu}{k} |v| + \beta \rho v |v|$ β is the non-Darcy flow coefficient, or Forchheimer coefficient (Forchheimer, 1901)

Baree and Conway equation

$$-\nabla \Phi = \frac{\mu \mathbf{v}}{k_d \left(k_{mr} + \frac{(1 - k_{mr})\mu \tau}{\mu \tau + \rho |\mathbf{v}|} \right)}$$

 k_d is absolute Darcy permeability;

(Baree and Conway, 2004 and 2007)

 k_{mr} is the minimum permeability ratio at high flow rate;

 τ is the the characteristic length

Darcy-Forchheimer flow

Darcy-Forchheimer flow is defined as the flow incorporating the transition between Darcy and Forchheimer flows

Transition criteria

□ The Reynolds number (Type-I)

applied mainly in the cases where the representative particle diameter is available

d is the diameter of particles

□ The Forchheimer number (Type-II)

used mainly in numerical models

 $f = \frac{\rho k \beta v}{\mu}$

 $\operatorname{Re} = \frac{\rho dv}{1}$

consistent definition physical meaning of the variables

Research objectives

- Develop a generalized Darcy-Forchheimer model
- Propose a method to determine the critical
 Forchheimer number for single and multiphase flows
- Use the model and method to analyze the Darcyforchheimer flow in the near well-bore area during CO₂ injection into DSA

Math model for two-phase flow

$$\frac{\partial(\theta\rho_{\alpha}S_{\alpha})}{\partial t} = -\nabla \bullet (\rho_{\alpha}v_{\alpha}) + Q_{\alpha} \quad ; \ \alpha = w, \ n$$

$$\stackrel{\theta: \text{ porosity};}{\underset{Q_{\alpha}: \text{ saturation};}{\underset{Q_{\alpha}: \text{ source and sink.}}}$$

$$-\frac{dp_{\alpha}}{dx} = \frac{\mu_{\alpha}v_{\alpha}}{k k_{r}^{\alpha}} + \beta_{\alpha}\rho_{\alpha}v_{\alpha} |v_{\alpha}| \quad ; \ \alpha = w, \ n$$

$$v_{\alpha} = -(\frac{k_{r}^{\alpha}k}{\mu_{\alpha}} \frac{1}{1+f_{\alpha}}(\frac{dp_{\alpha}}{dx})) \quad ; \ \alpha = w, \ n$$

$$\frac{\partial(\theta\rho_{\alpha}S_{\alpha})}{\partial t} = \nabla \cdot (\rho_{\alpha}\frac{k_{r}^{\alpha}k}{\mu_{\alpha}}\frac{1}{1+f_{\alpha}}(\nabla p_{\alpha})) + Q_{\alpha} \quad ; \quad \alpha = w, \ n$$

Constitutive equations needed

- $S_w + S_n = 1$
- $P_c = P_n P_w$
- P_c : capillary pressure;

 P_D : entry pressure;

- S_w^r : irreducible saturation for water;
- S_w^n : irreducible saturation for non-wetting phase;

Brooks-Corey equations :

$$P_c = P_D S_{eff}^{-(1/\lambda)}$$

$$S_{eff} = \frac{S_{w} - S_{w}^{r}}{1 - S_{w}^{r} - S_{n}^{r}}$$

$$\mathbf{k}_{r}^{w} = (S_{eff})^{(2+3\lambda)/\lambda}$$

$$k_{r}^{n} = (1 - S_{eff})^{2} (1 - (S_{eff})^{(2+3\lambda)/\lambda})$$

 λ : pore size distribution index.

The Forchheimer number

$$\beta = \frac{2.923 * 10^{-6} \tau}{(k)(\theta)}$$

au Is tortuosity

(Liu et al., 1995)

$$\beta_{\alpha} = \frac{2.923 * 10^{-6} \tau}{\left(kk_r^{\alpha}\right)\left(\theta\right)} \quad ; \ \alpha = w, \ n$$

(Ahmadi et al., 2010)

$$\beta_{\alpha} = \frac{C_{\beta}\tau}{\left(kk_{r}^{\alpha}\right)\left(\theta S_{\alpha}\right)} \qquad ; \alpha = w, n$$

Evans and Evans (1988) :"a small mobile liquid saturation, such as that occurring in a gas well that also produces water, may increase the non-Darcy flow coefficient by nearly an order of magnitude over that of the dry case."

Determine the critical f_{α}

Type I: based on Reynolds number for single phase

(Chilton et al., 1931)

The point when the linear relationship begins to deviate

Determine the critical f_{α}

Type II: based on the Forchheimer number for single phase

Intersection of two regression lines

Darcy: $-\frac{dp}{dx\beta\rho v^2} = \frac{1}{f}$ β is not defined in the Darcy formula!!! $non - Darcy: -\frac{dp}{dx Rov^2} = \frac{1}{f} + 1$ The friction factor is defined as $-\frac{dp}{dx\beta\omega^2}$ Darcy: $-\frac{dp_{\alpha}}{dx\beta_{\alpha}\rho_{\alpha}v_{\alpha}^{2}} = \frac{1}{f_{\alpha}}$ non-Darcy: $-\frac{dp_{\alpha}}{dx\beta_{\alpha}\rho_{\alpha}v_{\alpha}^{2}} = \frac{1}{f_{\alpha}} + 1$

An example plot for 0.95 water saturation

Data from (Sobieski and Trykozko, 2012)

Critical Forchheimer number for H_2O and CO_2 at different saturation values

Numerical model

 \square Primary variables: P_w and S_n

□ Fully-implicit scheme

Discretization method: CVFD
 Control volume finite difference

Control volume finite difference

1

For 1D case, the two-phase mass conservation equations can be discretized into

$$\begin{aligned} \theta S_{n}^{t+1} + a(p_{wi+1}^{t+1} - p_{wi}^{t+1}) - b(p_{wi}^{t+1} - p_{wi-1}^{t+1}) &= \theta S_{n}^{t} - \left(\frac{Q_{w}}{\rho_{w}}\right)^{t} \Delta t \\ \theta S_{n}^{t+1} - \left(c(p_{wi+1}^{t+1} - p_{wi}^{t+1}) - d(p_{wi}^{t+1} - p_{wi-1}^{t+1})\right) \\ &- \left(\left(\frac{\partial p_{c}}{\partial S_{n}}\right)_{i+\frac{1}{2}} c(S_{n+1}^{t+1} - S_{ni}^{t+1}) - \left(\frac{\partial p_{c}}{\partial S_{n}}\right)_{i-\frac{1}{2}} d(S_{ni}^{t+1} - S_{ni-1}^{t+1})\right) \\ &= \theta S_{n}^{t} + \left(\frac{Q_{n}}{\rho_{n}}\right)^{t} \Delta t \\ &a = \left[\frac{\Delta t}{(\Delta x)^{2}} \frac{kk_{r}^{w}}{\mu_{w}} \frac{1}{1+f_{w}}\right]_{i+\frac{1}{2}} \qquad b = \left[\frac{\Delta t}{(\Delta x)^{2}} \frac{kk_{r}^{w}}{\mu_{w}} \frac{1}{1+f_{w}}\right]_{i-\frac{1}{2}} \\ &c = \left[\frac{\Delta t}{(\Delta x)^{2}} \frac{kk_{r}^{n}}{\mu_{n}} \frac{1}{1+f_{n}}\right]_{i+\frac{1}{2}} \qquad d = \left[\frac{\Delta t}{(\Delta x)^{2}} \frac{kk_{r}^{n}}{\mu_{n}} \frac{1}{1+f_{n}}\right]_{i+\frac{1}{2}} \end{aligned}$$

$$\mathbf{x} = \begin{bmatrix} S_{n1}^{t+1}, \cdots S_{ni}^{t+1}, \cdots S_{nm}^{t+1}, p_{w1}^{t+1} \cdots p_{wi}^{t+1}, \cdots p_{wm}^{t+1} \end{bmatrix}^{T} \qquad \mathbf{AX} = B$$

Numerical algorithm

For each iteration of each time step, \mathbf{X} and other related variables in the last time step are used to update all the coefficients including *a*, *b*, *c*, *d*, *dPc/dSn*, *fw*, *fn* and all the elements in the right hand side **B**;

The right hand side term **B** is based on the variables in the last time step and don't need to be updated except for the first iterative step;

Mass balance check

$$\begin{split} I_{\alpha} &= \frac{\sum_{i=1}^{m} V_{i} \theta[S_{\alpha i}^{-t} - S_{\alpha i}^{-t-1}]}{\sum_{i=1}^{m} \Delta t_{i} (Q_{\alpha i}^{-t} + \sum_{l \in \Gamma} q_{\alpha l,i}^{-t})} \quad ; \alpha = w, n \\ C_{\alpha} &= \frac{\sum_{i=1}^{m} V_{i} \theta[S_{\alpha i}^{-t} - S_{\alpha i}^{-0}]}{\sum_{j=1}^{t} \Delta t_{j} \sum_{i=1}^{m} (Q_{\alpha i}^{-j} + \sum_{l \in \Gamma} q_{\alpha l,i}^{-j})} \quad ; \alpha = w, n \end{split}$$

 Γ is the boundaries of the domain *m* is the number of the nodes; *t* is the number of time steps; Q is discharge for pumping or injecting wells; q is the flow rate through the boundaries;

For Q and q, they are set to be positive if entering the domain while negative if leaving the domain.

$$f_{\alpha} = \begin{cases} 0, \text{ if } f_{\alpha} < (f_{\alpha})_{c} & \text{Darcy flow} \\ f_{\alpha}, \text{ if } f_{\alpha} > (f_{\alpha})_{c} & \text{Forchheimer flow} \end{cases}$$

Validation: Buckley-Leverett problem with inertial effect

- □ Both fluids and the porous medium are incompressible;
- □ Capillary pressure gradient is negligible;
- □ Gravity effect is negligible;
- □ Semi-analytical solution with inertial effect (Wu, 2001; Ahmadi et al., 2010)

Comparison of saturation profiles

Application problem

Properties of soil and fluids

Properties	Values	Comment		
Soil				
Soil intrinsic permeability porosity	3e-9 m ² 0.37			
Pore size distribution index	3.86	Brook-Corey		
Water residual saturation	$S_{wr} = 0.35$			
Non-wetting phase (NWP) residual saturation	$S_{nr} = 0.05$			
	Fluid			
Water density	994 kg/m ³			
NWP density	479 kg/m ³			
Water viscosity	7.43e-4 Pa s			
NWP viscosity	3.95 e-5 Pa s			

Modeling parameters

Properties	Values	Comment		
Boundary condition				
Water pressure at x=0.5 m Water pressure at x=31.5 m Water pressure at z=0.5 m Water pressure at z=15.5 m	$P_w = 8 M Pa$, BC Type I $P_w = 8 M Pa$, BC Type I No flow boundary $P_w = 8 M Pa$, BC Type I	Left boundary Right boundary Bottom boundary Top boundary		
CO ₂ saturation at x=0.5 m CO ₂ saturation at x=31.5 m CO ₂ saturation at z=0.5 m CO ₂ saturation at z=15.5 m CO ₂ injecting rate @ (16,1)	$S_n = 0.1$, BC Type I $S_n = 0.1$, BC Type I No flow boundary $S_n = 0.1$, BC Type I $1*10^{-3} \text{ m}^{3/\text{s}}$	Per meter normal to the 2D domain		
Initial conditionWater saturationNWP saturationWater pressure	$S_{w} = 0.9$ $S_{n} = 0.1$ $P_{w} = 8 M Pa$	Saturated with water initially		
Space discretization		Time discretization		
Domain size, Length Domain size, Depth Domain size, Width Space step size	L=31 m $W=15 m$ $1 m$ $dx = dz=1 m$	Simulation time Time step size	T= 9000 s dt=1 s	

CO₂ saturation and pressure profiles

f_{nx} and f_{nz} profiles with time

The evolution of important variables in

the first row

CO₂ saturation and pressure profiles

Darcy flow

Comparison of the evolution of important variables

CO₂ saturation contour for Darcy-Forchheimer flow

Time 1000 sec (solid line), 3000 sec (dot line), 5000 sec (dash line), 7000 sec (bold solid line), 9000 sec (dash dot line)

CO₂ saturation contour for Darcy flow

7000 sec (bold solid line), 9000 sec (dash dot line)

Overlapping them together

Time 1000 sec (solid line), 3000 sec (dot line), 5000 sec (dash line), 7000 sec (bold solid line), 9000 sec (dash dot line); Darcy in red; Darcy-Forchheimer in black

Match S_n with Forchheimer flow regime

The white contour lines are for 0.4 saturation contour lines while the rectangles demonstrate

whether a node is of Forchheimer (grey rectangle) or Darcy (white rectangle) flow

Comparison of CO₂ pressure between Forchheimer-Darcy and Darcy flow

Higher displacement efficiency

- □ In the Forchheimer regime for Darcy-Firchheimer flow, the total CO₂ saturation is 4.5916 for the nine nodes at 9100 sec.
- □ For Darcy flow, the total CO_2 saturation is 3.4072 for the same nine nodes at 9100 sec.
- □ The displacement is 34.76% higher for Forchheimer flow than Darcy flow at 9100 sec.

Implications

- Important to incorporate Forchheimer effect into the numerical simulation of multiphase flow
- Crucial to determine the critical Forchheimer number and to decide the extent to which Forchheimer effect can influence the transport of CO₂ in deep saline aquifers.
- □ The higher displacement efficiency by CO_2 is good news for CO_2 sequestration into deep saline aquifers.
- □ The higher injection pressure required in Forchheimer flow is bad news for CO_2 sequestration.

Summary & conclusions

- Darcy flow is a special case of a generalized Darcy-Forchheimer flow;
- Since both the Forchheimer coefficient and number are functions of saturation, there is a critical Forchheimer number for transition for a specific saturation for each phase in multiphase flow;
- The good agreement between the numerical solution and the semi-analytical solution validates the numerical tool developed in this study

Summary & conclusions

- The Forchheimer flow can improve the displacement efficiency and can increase the storage capacity for the same injection rate and volume of site.
- The higher injection pressure required in Forchheimer flow is bad news for CO₂ sequestration because the pressure will continue to increase and might even exceed the litho-static stress and the risk for fracturing the porous media would increase.

Thank you!