
Numerical simulation of two-phase 
Darcy-Forchheimer flow during CO2 
injection into deep saline aquifers 

Andi Zhang 
Feb. 4, 2013 



Darcy flow VS non-Darcy flow 
 Darcy flow 
A linear relationship between volumetric flow rate (Darcy 

velocity) and  pressure (or potential) gradient  
Dominant at low flow rates v

k
µ

−∇Φ =

Non-Darcy flow 
Any deviations from the linear relation may be defined as 

non-Darcy flow 
Interested in the nonlinear relationship that accounts for the 

extra friction or inertial effects at high pressure 
gradients/ high velocity 

    is the flow potential; 

μ is the viscosity; 

v is the Darcy velocity; 

k is the intrinsic permeability  

Φ



Non-Darcy flow equations 

 is the non-Darcy flow coefficient, or Forchheimer coefficient
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(Forchheimer, 1901) 

 is absolute Darcy permeability;

is the minimum permeability ratio at high flow rate;

is the the characteristic length
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(Baree and Conway, 2004 and 2007) 

Forchheimer equation 

Baree and Conway equation 



Darcy-Forchheimer flow 
 Darcy-Forchheimer flow is defined as the 

flow incorporating the transition between 
Darcy and Forchheimer flows 



Transition criteria  
 The Reynolds number (Type-I)  
      applied mainly in the cases where the representative particle diameter is available  

 The Forchheimer number (Type-II)  
         used mainly in numerical models  

Re dvρ
µ

= d is the diameter of particles  

k vf ρ β
µ

= consistent definition  
 physical meaning of the variables  



Research objectives 
 Develop a generalized Darcy-Forchheimer model 

 
 Propose a method to determine the critical 

Forchheimer number for single and multiphase flows 
 

 Use the model and method to analyze the Darcy-
forchheimer flow in the near well-bore area during 
CO2 injection into DSA 



Math model for two-phase flow 

θ : porosity; 
Sα : saturation; 
Qα : source and sink. 
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Constitutive equations needed 
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cP   : capillary pressure; 
 

DP  : entry pressure;  
 

r
wS  : irreducible saturation for water;  

n
wS : irreducible saturation for non-wetting phase;  

 
λ  : pore size distribution index.  

Brooks-Corey equations : 



The Forchheimer number 
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Evans and Evans (1988) :“a small mobile liquid saturation, 
such as that occurring in a gas well that also produces 
water, may increase the non-Darcy flow coefficient by 
nearly an order of magnitude over that of the dry case.”  



Determine the critical αf

(Chilton et al., 1931)  

Type I: based on Reynolds number for single phase  

The point when the linear relationship begins to deviate 



Type II: based on the Forchheimer number for single phase  

(Green et al., 1951)  

Determine the critical αf

The point when the linear relationship begins to deviate 



Intersection of two regression lines 
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The friction factor is defined as 
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An example plot for 0.95 water saturation 
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Data from (Sobieski and Trykozko, 2012)  

The two lines intercept where 1/fw=4.825, so  ( )w c
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Critical Forchheimer number for H2O 
and CO2 at different saturation values  
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Numerical model 

 Primary variables: Pw and Sn 

 
 Fully-implicit scheme 
   
   

 Discretization method: CVFD 
     Control volume finite difference  

 



 Control volume finite difference  
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For 1D case, the two-phase mass conservation equations can be discretized into  



Numerical algorithm  

t < t_max 
NO 

Stop 

 

Initialization 

Output 

 
YES 

Update coefficients  

Solve X 

|(X-X_o)/X| > tol 
NO 

Update 
Variables 

YES 

X_o = X 

 
Update coefficients  

Solve X 

t = t+dt 

Output 

 

X_o = X 

 

mb check 

 

For each iteration of each time step, X 
and other related variables in the 
last time step are used to update 
all the coefficients including a, b, 
c, d, dPc/dSn, fw, fn and all the 
elements in the right hand side B;  
 

The right hand side term B is based on 
the variables in the last time step 
and don’t need to be updated 
except for the first iterative step;  



Mass balance check 
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m is the number of the nodes; 
t is the number of time steps; 
Q is discharge for pumping or injecting wells; 
q is the flow rate through the boundaries; 

Γ  is the boundaries of the domain 
For Q and q, they are set to be positive 
if entering the domain while negative if 
leaving the domain. 



Darcy-Forchheimer flow 
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Validation: Buckley-Leverett problem with inertial effect  

 Both fluids and the porous medium are incompressible; 
 Capillary pressure gradient is negligible; 
 Gravity effect is negligible; 
 Semi-analytical solution with inertial effect (Wu, 2001; Ahmadi et al., 2010)  

Water flooding 
No flow boundary 

BC type I for Pw 
BC type I for Sn 

No flow boundary 

No flow boundary 

x 



Comparison of saturation profiles 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Sw distribution

Distance(m)

W
at

er
 s

at
ur

at
io

n

 

 

Analytical: 3000 sec
Analytical: 7000 sec
Analytical: 10000 sec
Numerical: 3000 sec
Numerical: 7000 sec
Numerical: 10000 sec



Application problem 

BC type I for Pw 
BC type I for Sn 

BC type I for Pw 
BC type I for Sn 

 

BC type I for Pw 
BC type I for Sn 
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Properties of soil and fluids  
Properties Values Comment 

Soil 

Soil intrinsic permeability 
porosity 

            3e-9 m2 

 0.37 

Pore size distribution index 3.86 Brook-Corey 

Water residual saturation Swr = 0.35 

Non-wetting phase (NWP) residual 
saturation 

Snr = 0.05 

Fluid 

Water density 994 kg/m3 

NWP density 479 kg/m3 

Water viscosity 7.43e-4 Pa s 

NWP viscosity 3.95 e-5 Pa s 



Modeling parameters 
Properties Values Comment 

Boundary condition 

Water pressure at x=0.5 m 
Water pressure at x=31.5 m 
Water pressure at z=0.5 m 
Water pressure at z=15.5 m 

Pw = 8 M Pa, BC Type I 
Pw = 8 M Pa, BC Type I 
No flow boundary 
Pw = 8 M Pa, BC Type I 

Left boundary 
Right boundary 
Bottom boundary 
Top boundary 

CO2 saturation at x=0.5 m 
CO2 saturation at x=31.5 m 
CO2 saturation at z=0.5 m 
CO2 saturation at z=15.5 m 
CO2 injecting rate @ (16,1) 

Sn = 0.1, BC Type I 
Sn = 0.1, BC Type I 
No flow boundary 
Sn = 0.1, BC Type I 
1*10-3 m3/s 

 
 
 
 
Per meter normal to the 2D domain 

Initial condition 

Water saturation 
NWP saturation 
Water pressure 

Sw = 0.9 
Sn = 0.1 
Pw = 8 M Pa 

Saturated with water initially 

Space discretization Time discretization 

Domain size, Length 
Domain size, Depth 
Domain size, Width 
Space step size 

L=31 m 
W=15 m 
1 m 
dx =dz=1 m  

Simulation time 
Time step size 

T= 9000 s 
dt=1 s 



CO2 saturation and pressure profiles 

Darcy-Forchheimer flow 



fnx and fnz profiles with time 

Darcy-Forchheimer flow 



The evolution of important variables in 
the first row 
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Darcy-Forchheimer flow 



CO2 saturation and pressure profiles 

Darcy flow 



Comparison of the evolution of 
important variables  
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CO2 saturation contour for Darcy-
Forchheimer flow 
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Overlapping them together 
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Match Sn with Forchheimer flow regime 

The white contour lines are for 0.4 saturation contour lines while the rectangles demonstrate 

whether a node is of Forchheimer (grey rectangle) or Darcy (white rectangle) flow  

12 14 16 18 20
1

2

3

4

5

x(m)

z(
m

)

Sn and fnz distribution @1000 sec

 

 

12 14 16 18 20
1

2

3

4

5
Sn and fnz distribution @3000 sec

x(m)

z(
m

)

12 14 16 18 20
1

2

3

4

5
Sn and fnz distribution @5000 sec

x(m)

z(
m

)

12 14 16 18 20
1

2

3

4

5
Sn and fnz distribution @7000 sec

x(m)

z(
m

)



Comparison of CO2 pressure between 
Forchheimer-Darcy and Darcy flow  
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Higher displacement efficiency 
 In the Forchheimer regime for Darcy-Firchheimer 

flow, the total CO2 saturation is 4.5916 for the nine 
nodes at 9100 sec. 
 

 For Darcy flow, the total CO2 saturation is 3.4072 for 
the same nine nodes at 9100 sec. 
 

 The displacement is 34.76% higher for Forchheimer 
flow than Darcy flow at 9100 sec. 



Implications 
 Important to incorporate Forchheimer effect into the 

numerical simulation of multiphase flow 
 Crucial to determine the critical Forchheimer number 

and to decide the extent to which Forchheimer effect 
can influence the transport of CO2 in deep saline 
aquifers.  

 The higher displacement efficiency by CO2 is good 
news for CO2 sequestration into deep saline aquifers. 

 The higher injection pressure required in Forchheimer 
flow is bad news for CO2 sequestration.   



Summary & conclusions 
 Darcy flow is a special case of a generalized Darcy-

Forchheimer flow; 
 Since both the Forchheimer coefficient and number  

are functions of saturation, there is a critical 
Forchheimer number for transition for a specific 
saturation for each phase in multiphase flow; 

 The good agreement between the numerical solution 
and the semi-analytical solution validates the 
numerical tool developed in this study 



Summary & conclusions 
 The Forchheimer flow can improve the displacement 

efficiency and can increase the storage capacity for 
the same injection rate and volume of site. 
 

 The higher injection pressure required in 
Forchheimer flow is bad news for CO2 sequestration 
because the pressure will continue to increase and 
might even exceed the litho-static stress and the risk 
for fracturing the porous media would increase. 



Thank you! 
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